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Resumo 
 Este artigo tem como foco principal a dinâmica populacional brasileira entre 1970 e 
2010. Neste sentido, nosso objetivo é explorar o comportamento da distribuição populacional, 
utilizando tanto a abordagem tradicional de rank quanto as cadeias de Markov. A fim de obter 
informações mais precisas sobre a dinâmica e a evolução da distribuição populacional, a 
dependência espacial é introduzida através da análise de LISA Markov e Spatial Markov 
Chains. O formato da distribuição indica que a divergência no tamanho populacional das 
Áreas Mínimas Comparáveis (AMC) é decrescente. A estimação da lei de Zipf traz evidências 
de que a distribuição populacional está, a cada década, de distanciando da distribuição de 
Pareto. A abordagem utilizando as cadeias de Markov traz como principais evidências a alta 
persistência das AMCs permanecerem nas suas classes iniciais com o passar das décadas e o 
fenômeno que diferentes contextos espaciais tem efeitos diferentes sobre a transição das 
localidades. 

Palavras-Chave: Distribuição populacional, Lei de Zipf, Cadeias de Markov, Dependência 
espacial 

 

Abstract 
 This paper focuses on the Brazilian population dynamics between 1970 and 2010. In 
this sense, our objective is to explore the behavior of the Brazilian population distribution, 
revisiting the traditional rank-size rule and Markov chain approaches. In order to bring up 
more accurate information on the dynamics and evolution of the population distribution, the 
spatial dependence is introduced through the analysis of LISA Markov and Spatial Markov 
Chains. The distribution shape may indicate that divergence in population size of Minimum 
Comparable Areas  (MCAs) is decreasing. The Zipf's law estimation indicates that the 
population distribution is, every decade, moving away from Pareto law. Markov chain 
approach brings as main evidence the high-persistence of MCAs to stay in their own class 
size from one decade to another over the whole period, and different spatial contexts have 
different effects on transition for regions.  
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1. Introduction 
 According to UN Population Division data, the percentage of people living in urban 
centers in Brazil went from 55.8% in 1970 to 87% in 2010. Therefore, it is noteworthy that 
Brazil has become an increasingly urban country in the last 40 years and consequently, the 
study of cities becomes increasingly important to achieve the understanding of the national 
urban system. In this sense, these simple evidences awakens the need for research regarding 
population dynamics (growth and size distribution) of Brazilian cities, a topic that has been 
studied since the 1970s for the United States and the European countries cases, but which is 
still scarce for the Brazilian case. 
 Population growth of cities is also associated with the population movement between 
municipalities. To illustrate, according to data from the Brazilian Institute of Geography and 
Statistics (IBGE) in 1970 there were 66 cities in Brazil with more than 100 000 inhabitants, 
105 cities in the early 1980s, 398 in 2000, and this number increased to 488 in 2010. 
Meanwhile, in the last decade the number of cities with over 1 million inhabitants went only 
from 13 to 14. In this sense, the concern is not only for the scale of urbanization, but also for 
the distribution of population across the urban hierarchy that becomes a challenge for policy 
makers to establish strategies for cities of different sizes. This observation raises some 
questions: How cities of different sizes grow during the process of development and 
transformation of a country? Is the degree of cities-size mobility slow or fast in the last 40 
years? Are the movements within the distribution affected by spatial dependence? 
 Regarding this context, some authors investigated the behavior of cities’s size 
distribution (Dobkins and Ioannides, 1999; Black and Henderson, 2003; Gabaix and 
Ioannides, 2004; Gallo and Chasco, 2007). About the Brazilian case, there are few studies on 
the behaviour of population distribution. Oliveira (2004a), when analyzing the evolution of 
city-size distribution in Brazil between 1936 and 2000, found evidence that smaller cities 
grew less than large ones until the 1990s. Trindade and Sartoris (2009) examined the 
evolution of size distribution of cities in Brazil between the 1920-2000 period and the results 
show evidence of divergence, similarly to Oliveira (2004a). Justo (2012) finds evidence of 
low interclass mobility and high persistence in the population distribution behavior of 431 
minimum comparable areas between 1910 and 2010. Moro and Santos (2013) also found low 
mobility for the period of 1970-2010, but they only as sample the municipalities that existed 
in 1970, not covering all Brazilian territory. 
 For studies on the characterization and evolution of population distribution, the 
national literature available does not include information in their databases beyond the year 
2000 (e.g.: Oliveira, 2004a; Trindade and Sartoris, 2009), do not go further in the 
investigation of spatial effects (e.g.: Justo, 2012) or do not cover all Brazilian territory (e.g.: 
Moro and Santos, 2013). In this sense, the first focus of this thesis is to assess the behavior of 
the population size distribution of Brazilian Minimum Comparable Areas (MCA) covering all 
Brazilian territory between 1970 and 2010. 1 Furthermore, the intention of the first part of the 
study is to advance in providing more accurate evidences, taking into account the possibility 
of spatial dependence in population size distribution by using current spatial techniques. In 
analyzing the evolution of Brazilian minimum comparable areas (MCA) population 
distribution, we begin by revisiting the traditional rank-size rule and Pareto distribution 
approaches. Therefore, in order to bring up information on the dynamics and evolution of the 
population distribution, we lead with the estimation of transition probability matrices 
associated with discrete Markov chains (Kemeny and Snell, 1976). And then, the spatial 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 A MCA is a municipality or an aggregation of municipalities necessary to enable consistent spatial 
analyses over time. More details follow in section 4.2. 



dependence is introduced through the analysis of LISA Markov and Spatial Markov Chains, 
both developed by Rey (2001).  
 In addition to these introductory notes, in the section 2 we present the foundations for 
distributions dynamics of population and spatial dependence through the literature review and 
presentation of Zipf’s law and Markov Chain approaches. Section 3 describes the dataset and 
reports the results of the empirical analysis regarding distributional dynamics. The 
conclusions are presented in section 4. 
 
2. Distribution Dynamics of Population and Spatial Dependence 
 In this section, we present the literature review and methodologies used to analyze the 
behavior of the MCAs's population distribution covering the entire Brazilian territory in the 
period 1970-2010. The first methodology deals with the traditional estimation of Zipf's Law, 
which verifies that the distribution of city sizes follows the Pareto distribution. This technique 
only provides some information about static distribution at each point in time. As suggested 
by Duranton (2006), even though it may be only a rough first approximation, Zipf's law 
nonetheless remains a useful benchmark to think about the distribution of city sizes. 
Therefore, in order to bring up information on the dynamics and evolution of the population 
distribution, i.e., to access information on the movements of the localities within the 
distribution, techniques based on the Markov Chain will be explored in the remaining topics 
in this section. 
 
2.1 Literature Review 
 Based on the integration of spatial statistic with modeling using Markov chains, Rey 
(2001) studies the evolution of the regional distribution of income taking into account the 
transitions of both the individual economies and those of their respective geographic 
neighbours within a distribution of income. Using data from 48 U.S. states for the period 
1929-1994, the main result found by the author is that the rates of upward or downward 
mobility of the states within the distribution was sensitive to the position of its neighbour in 
the same distribution. And a possible implication in terms of policy is that, for example, a 
policy to reduce regional disparities could be more effective when the receiving state of the 
policy is surrounded by less disparate states. 
 Black and Henderson (2003) examine the evolution of the US city size distribution by 
applying Zipf 's Law to the 20th century US city size distribution. They then turn to a more 
general approach to analyze the evolution and trends of the size distribution of cities by 
modeling the transition process of cities directly. In relation to the Zipf’s Law, the Pareto 
parameter estimated for the whole sample lending modest support to the view of increasing 
urban concentration in recent decades. For the top one-third of cities, the rise in the Pareto 
parameter would suggest decreasing urban concentration in the US over time. But the fact is 
that this difference between the estimated parameters suggests that the relationship between 
rank and city size is not log-linear. In relation to city size distribution, the authors conclude 
that existing cities tend to move up the size distribution ‘fairly quickly’, but to move down 
extremely slowly. Additionally, there is some tendency in the USA towards increasing urban 
concentration, with a greater proportion of cities in large relative size categories.  
 Gallo and Chasco (2007) analyzed the evolution of population growth for a group of 
722 Spanish municipalities during the period 1900-2001. Attentive to the fact that the 
omission of spatial autocorrelation could cause a bias to the OLS estimator, the authors 
followed the strategy suggested by Anselin (1988) and estimated a spatial model SUR for 
Zipf's Law's (size distribution of cities follows a Pareto Law) and two main phases are found: 
divergence (1900-1980) and convergence (1980-2001). Furthermore, the authors estimated 
transition matrices associated with discrete Markov chains to obtain information concerning 



the movements of the urban groups within the population distribution. In this case, the results 
indicated that the municipalities located on the ends of the distribution would be more 
persistent in staying in those positions in the ranking, while medium-sized cities were more 
likely to move into smaller categories. The authors, however, do not explore the approach 
suggested by Rey (2001) who proposes the use of a spatial Markov matrix. 
 The international literature that refers to the behavior of population distribution is 
much wider than the one discussed in this thesis. Dobkins and Ioannides (1999) using the data 
from U.S. Census and cover metropolitan areas between 1900 and 1990, the authors found 
evidences of divergent growth, if spatial evolution is ignored, and convergent growth in the 
presence of very significant regional effects. Lalanne (2013) investigate the hierarchical 
structure of the Canadian urban system. Some papers discuss theoretical issues on city size 
distributions (Gabaix, 1999; Gabaix and Ioannides, 2003; Duranton, 2006; Gan et al., 2006). 
The diversity of international studies is very large, but this is not the case of the national 
literature. Below we list some work featured in national literature regarding distributional 
population behavior. 
 Oliveira (2004a), when studying the evolution of size distribution in Brazilian cities 
and testing the validity of Zipf's Law, estimates Pareto coefficient for Brazil between 1936 
and 2000. The obtained results do not allow the conclusion that the rule of order and size 
applies to Brazil. Only in 1960 and 1970 this rule is true, but represents a transition period, 
since the coefficient decreased constantly over the period studied. This reduction represents 
an increase in inequality in the size of Brazilian cities. In this study, the author does not take 
into account the spatial factors that could influence the results. 
 Trindade and Sartoris (2009) examine the evolution of the relationship between the 
size of Brazilian cities and their population distribution for the period between 1920 and 
2000. Using models based on Zipf's Law, Markov chain and taking spatial effects into 
account, the authors find in their results that there is a persistent population concentration in a 
small number of areas. As Gallo and Chasco (2007), the authors do not use the approach of 
spatial Markov matrix proposed by Rey (2001), which would have clearer information about 
the spatial relation existing in size distribution of cities. 
 Monastério (2009) analyzes the changes in the spatial distribution of population and 
manufacturing employment in Brazil between 1872 and 1920. To this end, the used tools, 
which combine the spatial analysis techniques Exploratory Spatial Data Analysis (ESDA) of 
the Markov chain, as, suggested by Rey (2001). The sample consists of minimum comparable 
areas in the Northeast, Southeast and South, and the state of Goiás. That is, the other states of 
the Midwest and the northern region are outside the sample used. The analysis revealed 
differences in the trajectories of the areas within states, the role of space in the dynamics and 
the tendency to increase in concentration during the studied period, especially with regard to 
manufacturing occupation. The analysis using the Markov matrix spatially conditioned 
indicated that the neighborhood was essential to the destinations of AMCs. Localities with 
little dense neighbors tended to approach the low-density profile of its neighbors. 
 Justo (2012) seeks to identify the dynamics of population growth for a group of 431 
minimum comparable areas in Brazil between 1910 and 2010. For this, the author estimated 
spatial models for Zipf's law achieving results that point to the divergence, which has been 
losing strength in recent decades. Furthermore, through the estimation of functions of non-
parametric densities, the author attempts to characterize the population distribution and 
through a process stationary first order Markov Chain shown the growth process of Brazilian 
cities. The results point to a low interclass mobility and high persistence. The probability of 
remaining cities on the class itself between a decade and another over the last hundred years is 
high. Despite being a very recent paper, as Trindade and Sartoris (2009), the author does not 
use the approach of spatial Markov matrix proposed by Rey (2001). 



 Moro and Santos (2013) test the Zipf’s Law in order to describe the spatial 
distribution of the Brazilian cities and Markov Chains analysis to examine the dynamics of 
the cities within the urban system. Additionally, the authors introduce spatial dependence in 
both Zipf’s law estimation and Markov. To estimate the Zipf’s law equation, they used the 
full sample of municipalities between 1970 and 2010. The results point that the Pareto 
coefficient is much smaller than 1, featuring a polarized and asymmetric urban structure. 
Regarding the spatial Markov approach, the results show strong evidence that the probability 
of urban growth of a municipality depends on the surrounding urban context, and there is a 
low mobility for the period 1970-2010. However, in the Markov chain analysis, they use as 
sampling only municipalities that existed in 1970, not covering all Brazilian territory in the 
following decades. In this way, territory and population of new municipalities (created from 
the subdivision of former municipalities) will be excluded from the sample, skewing the 
results with selection bias.   
 
2.2 Zipf’s Law 
 The evolution of the size distribution of cities is explored through the law of Zipf, or 
rank-size rule. Zipf (1949) stated that the size distribution of cities follows a Pareto law 
(Pareto, 1896) by claiming that: 

                                                                                                                                (1) 
where R is the classification order of the city in the size distribution of population, S is the 
city's population, a and b are parameters, b is the Pareto exponent. Formally, the size 
distribution of cities depends on the value of b parameter. In the limit, if b tends to infinity, all 
cities will have the same size. The smaller the value of b, the greater the inequality in the size 
distribution of cities.  
 In terms of the Pareto distribution, this means that the probability of city size be 

greater than some S is proportional to 1/S: , the statement of Zipf’s Law 
implies a Pareto exponent of unity, b=1. According to this law, populations of cities within 
any group of cities at any point in time are inversely proportional to the ranking of their 
populations in this group. According to Gabaix (1999), one proposed explanation for Zipf’s 
Law is if cities grow randomly, with the same expected growth rate and the same standart 
deviation, the limit distribution will converge to Zipf’s law. 
 At this moment to is interesting to point the differences between Zipf’s law and rank-
size rule. Using Gabaix (1999) words, Zipf’s law states that the probability that a city has a 

size greater than S decreases as 1/S. The rank-size rule states that we should expect the size  
of a city of rank I to follow a power law: the size of the city of rank I varies as 1/i , and the 
ratio of the second largest city to the largest city should be ½, the ratio of city 3 and city 2, 
2/3, and so on. These size ratios are often used to compare actual urban patterns with “ideal” 
(Zipf) patterns. In fact, even if Zipf’s law is verified exactly, the rank-size rule will be verified 
only approximately, if our probabilistic interpretation of Zipf’s law is correct. 
 The b parameter can be interpreted as an indication of inequatility. More precisely, the 
high value of b represents a greater possibility of mobility. That is, as the inequality in the 
localities's size is small, the possibility of mobility is higher in the rank. Greater dispersion of 
population among the cities implies increasing convergence of cities's sizes and a greater 
number of cities with a population close to average size (the smaller the size variance). 
Empirically, the logarithms are taken on both sides of equation (1) and the linear expression 
for each city each year is estimated: 

                                                                                                        (2) 
   

R = a ⋅S−b

P(Size > S) =α Sb

Si

lnRit = lnat − bt ⋅ lnSit +εit



 Unfortunately, it is not possible to have information on the dynamics of the 
distribution only from the estimation of equation (2). According to Gallo and Chasco (2007), 
Zipf's law allows the characterization of the overall evolution of the size distribution of cities, 
but gives no information on the movements of the cities within the distribution. It is not to 
possible to answer, for example, why is it that some cities are present in certain positions of 
the distribution over time. Another limitation of Zipf's law to study the population distribution 
of cities is that in addition to not realize movements within the distribution, it does not take 
into account the possibility that these movements are affected by spatial dependence. To 
clarify these issues, in the next topics we lead with the estimation of transition probability 
matrices associated with discrete Markov chains (Kemeny and Snell, 1976), which will make 
it possible to follow the progress of each group of cities of a certain size in time. And then, 
the spatial dependence is introduced through the analysis of LISA Markov and Spatial 
Markov Chains, both developed by Rey (2001). 
 
2.3 Markov Chains and Spatial Dependence 
 The study of distributive population dynamics according to the position of the cities 
and the trend configuration of population distribution over time is a method aimed at 
describing the law of motion driving the evolution of the distribution as a Markovian 
stochastic process. Once estimated the motion up or down probabilities in the population 
hierarchy during a transition period of a given length, the law is used to calculate a limiting 
population distribution characterizing a stochastic steady-state income distribution to which 
the system converges over time. Through modeling of the transition process of the minimum 
comparable areas directly, we can examine the evolution and trends in the MCAs size 
distribution. Compared to continuous stochastic kernels, for example, one of advantages of 
using this method listed by Gallo and Chasco (2007) is that discrete probability distribution 
and transition matrices are easier to interpret: various descriptive indices and the long-run or 
ergodic distribution are easier to compute. The Zipf’s law, as density functions, allows the 
characterization of the evolution of the global distribution, but Gallo and Chasco do not 
provide information about the movements of the localities within the distribution. 
Specifically, they do not say if the locations that were in a region of the distribution at the 
beginning remain or not in the same region of the distribution at the end of period. 

 We denote  as the distribution of the cross-section population of the minimum 
comparable areas at time t related to an average in the country. Defining a set of K different 
size classes, we discretize the population distribution in K relevant classes. To proceed with 
the estimation, first we need to assume that the distribution frequency follows a first order 

stationary process of Markov. This assumption requires transition probabilities, , of order 
1, which means independence of the classes at the beginning periods ( t-2, t-3, ...). If the order 
is higher, the transition matrix will not be clearly specified. That is, we only have part of the 
necessary information to describe the true evolution of the population distribution. Following 
this assumption, the evolution of a size distribution is represented by a transition probability 
matrix, M, in which each element (i, j) indicates which is the probability that a city in class i 
at time t will be in the class j in the following period. The (K, 1) vector indicating the 
frequency of cities in each size class at time t, is described by:  

                                                                                                                                 (3) 
where M is the matrix of transition probability ( ) representing the transition between two 
distributions: 

Ft

pij

Ft+1 =MFt
k × k



                                                                                                  (4) 

where each element  represents the probability that the cities of a particular size class k 

at time t-1  will be in the class j at time t and . 
 The elements of the matrix M can be estimated by the frequency of changes from a 
size class to another. According to Amemiya (1985) or Hamilton (1994), the maximum 

likelihood estimator of is: 

                                                                                                                                     (5) 

where is the total number of cities moving from class i in the decade t-1 to j in decade t and 

 is the total number of municipalities which remains in i for all T-1 transitions. 
 If the transition probabilities are stationary, in other words, if the probabilities of two 
classes do not vary over time, then: 
Ft+s = FtM

s
                                                                                                                                (6) 

 Thus, we can define the steady state distribution (also known as ergodic distribution) 

of , which is characterized when s tends to infinity in the equation (6), since the changes 
represented by M are repeated an arbitrary number of times. Such distribution of steady state 
exists if the Markov chain is regular, which means, if and only if, for an m,  has no inputs 
with a value equal to zero. In this case, the matrix of transition probabilities converges to 
of rank 1. Then the existence of a steady state distribution, , is characterized by: 
MF* = F*                                                                                                                                  (7) 
 The vector  describes the future distribution of cities’ sizes, if the movements 
observed in the sample period are repeated ad infinitum. Each row of  tends to the limit of 
the distribution when .  
 To get a sense of speed with which the urban localities move within the distribution, it 

is possible to calculate the matrix of mean first passage times , where one element  
indicates the expected time for a unit of observation to move from class i to class j for the first 

time. For a regular Markov chain,  is defined as  

                                                                                                           (8) 

where  is the identity matrix of order K, Z is the fundamental matrix: , 

 is the limiting matrix, e is the unit vector,  results from Z setting off-diagonal entries 

to 0, and D  is the diagonal matrix with diagonal elements , given that 

is the limiting probability vector for M (Kemeny and Snell, 1976).                                      
 A consideration about limitations of traditional Markov chains to study the dynamics 
of cities is that they do not capture the spatial dependence that may exist between the studied 
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observational units. This spatial dependence can arise from measurement errors, such as 
boundary mismatches between the administrative data and market processes (Rey, 2001), and 
may reflect amenities and knowledge spillovers or trade and migration flows. In this sense, in 
order to bring up information on the spatial dependence in the population distribution, 
techniques developed by Anselin (1995) and Rey (2001) will be explored in the remainder of 
this section. 
 
Local Indicators of Spatial Association 
 Anselin (1995) suggest a class of Local Indicators if Spatial Association (LISA) for 
the analysis of spatial clustering and hot spots. These local statistics can provide more 
detailed insights on the location specific nature of spatial dependence. The local Moran 
statistic is given by 

                                                                                                                          (9) 

where  expresses the observation for region I on a variable as a deviation from the mean, 

and  is the spatial lag for location i  

                                                                                                                            (10) 
 As pointed by Rey (2001), the local Moran can be used to map an observation’s 
location in absolute space into a relative space that consider not only its point in an a-spatial 
variate distribution, but also the location of its neighbours in the same distribution. The 

position of neighbours is summarized by the spatial lag from . The LISA implementation, 
then, divides the observations in four classes according to their local Moran statistic, as 
summarized in table below. Additionally, several geographical aspects can be viewed in a 
Moran scatter plot, consisting of pairs of local Moran and its spatial lag local Moran for each 
location. 
 
Table 1 – LISA Classifications 
Class Own Value ( ) Neighbours Value ( ) 
HH Above Average Above Average 
HL Above Average Below Average 
LH Below Average Above Average 
LL Below Average Below Average 
Source: Rey (2001)  
 Rey (2001) suggest an extension of LISA approach that integrates the local indicators 
of spatial integration into a dynamic framework based on Markov chain. The main motivation 
for this extension is the fact that Moran scatter plot only brings spatial information about the 
locational distribution of a given variable at a point in time. 
 In each period, the local Moran statistic for each observation can be classified into 
four mutually exclusive classes. Thus, there are twelve possible transitions a local Moran may 
experience over two or more periods. Moreover, These twelve transitions can be divided in 
three groups: Type 0 – The region-neighbours pair remains at same level; Type I – Only the 
region moves, but its neighbours were in the same category; Type II – Involves a transition of 
only the neighbours in relative space, but the region in question remains in the previous state; 
and Type III – Involves a transition of both a locality and its neighbours. The Type III can be 
broken down into two subgroups: IIIA – which occurs when both state and neighbours move 
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in the same direction in the distribution; and IIIB - occurs when locality and neighbours move 
in opposite directions.  
 Rey (2001) also suggests two interesting measures that can be obtained using the 
frequency of each type of transition between two periods. One is a flow measure, which can 
be understood as a measure of instability in the short-term spatial dynamics. A measure of 
instability or flux of the short run can be given by 

                                                                                                                        (11) 

Where is defined as the number of observation that experience a transition of type I in the 

period , and . This flux measure varies between 0 and 1, 
where 1 indicates a high instability. 
 Since the relationship between the locality and its neighbours remains cohesive under 
Type 0 and Type IIIA, a measure of spatial cohesion is given by 

                                                                                                           (12) 
This cohesion measure varies between 0 and 1, where 1 indicates a high cohesion. It is the 
percentage of locations that move in the same direction of its spatial lag or locality-
neighbours pair that remains in the same class from the previous period. 
 In the original implementation of LISA, developed by Anselin, a bifurcation of high 
and low value relative to the mean was used. This correspond to discretize the distribution in 
k=2 classes. According to Rey (2001), with respect to Markov chains, such classification may 
too aggregate and darken some of transitional dynamics in the income distribution.  
 
Spatial Markov Chains 
 Rey (2001) suggests a modification in the traditional Markov matrix, conditioning the 

transition probability ( ) to the j initial class of the spatial lag of the variable in question. 
Here, this conditioning concerns the population size class of the spatial lag in the initial 
period. This combination of traditional Markov matrix with the spatial autocorrelation is 
called spatial Markov matrix. Conditioned on the class of spatial lag in the initial period, this 
matrix can be constructed by dividing the traditional matrix ( ) in k conditional matrices 
of dimension (k,k), this is, the traditional matrix ( )is decomposed into a system (
). In other words, an explicit test of adherence or propulsive influence of neighbours of an 
economy can be based on the comparison between the different states transitions conditioned 
to the initial state of its spatial lag (Rey, 2001). 

 For the k-th matrix conditional, an element  is the probability of a region in class i 
at time t convert the class j in the next moment on the understanding that its spatial lag was in 
class k at time t. This matrix is shown in Table 1 below where k = 4. 
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Table 2 – Spatial Markov Transition Probability Matrix 
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Notes: Elaboration by the Author based on Rey (2001) 
 Table 2 can be used to test the negative or positive influence of geographic neighbours 
in a region. In this case, dividing the cities in four size classes (small, medium-small, 
medium-large and large), for example. If we want to know the effect of medium-large sized 
neighbours on the transition to move up or down of a city, we analyze the matrix elements in 

the third conditional, where the spatial lag is medium-large. Per instance, the  element 
stands for the possibility of a region in the medium-large class to move upwards given that its 
neighbours are in medium-large class. 
 Furthermore, it is possible to know the influence of spatial dependence on the 
transition probability comparing the elements of the traditional transition matrix with the 

elements of the spatial Markov matrix. For example, if , then the probability of an 
upward movement in the classification of a city in the medium-large class is higher than the 
probability of one in the medium-large class with neighbours in the same class. Generally 
speaking, if the neighbourhood has no effect on the probability of transition, then the 
conditional probability is equal to the probability of the traditional Markov matrix  

                                                                                                  (13) 
 The main gain in analyzing the dynamics of the spatial conditioning is capturing the 
influence of the location and thus the influence of the dimensions of the neighbors about the 
possibilities for mobility of minimum comparable areas within the populational hierarchy. 
Beyond to providing a more detailed view of the geographic dimension of population 
distribution, some interesting questions concerning the characteristics of population mobility 
can be formulated, in analogy with the questions that Rey(2001) has brought forward for the 
income distribution theme. Some of these: Is MCA’s probability of moving up or down the 
distribution related to the current, or past movements of its neighbors? Is this form of spatial 

ti
ti +1

p11|1 p12|1 p13|1 p14|1
p21|1 p22|1 p23|1 p24|1
p31|1 p32|1 p33|1 p34|1
p41|1 p41|1 p43|1 p44|1
p11|2 p12|2 p13|2 p14|2
p21|2 p22|2 p23|2 p24|2
p31|2 p32|2 p33|2 p34|2
p41|2 p41|2 p43|2 p44|2
p11|3 p12|3 p13|3 p14|3
p21|3 p22|3 p23|3 p24|3
p31|3 p32|3 p33|3 p34|3
p41|3 p41|3 p43|3 p44|3
p11|4 p12|4 p13|4 p14|4
p21|4 p22|4 p23|4 p24|4
p31|4 p32|4 p33|4 p34|4
p41|4 p41|4 p43|4 p44|4

p34|3

p34 > p34|3

pij|1 = pij|2 = ... = pij|k = pij  ∀ij



dependence of a similar magnitude for upward as opposed to downward moves in the 
distribution? These are some of the questions that can be answered by using of a spatial 
Markov matrix. 
 
3 Results 
 In order to examine the behavior of the population distribution between the minimum 
comparable areas covering the entire Brazilian territory, a series of empirical evidences is 
presented according to the characteristics of the methodologies applied. Besides the data 
implementation, the following two subsections deal with the estimation of density functions 
and Zipf's law. Then, techniques based on Markov Chain will be explored, in order to bring 
up information on the dynamics and evolution, as well as the possibility of spatial dependence 
on the behavior of population distribution. 
 
3.1 Data Implementation 
 The main source of data is the Brazilian Demographic Census for the years 1970, 
1980, 1991, 2000 and 2010 conducted by the Brazilian Institute of Geography and Statistics 
(IBGE). Although the municipality constitute the smallest unit of observation in political and 
administrative terms to which is possible to obtain economic and demographic data with 
coverage of entire Brazilian territory for various periods of time, the intertemporal 
comparisons in a strictly municipal geographic level become inconsistent with changes in the 
number, area, and border of municipalities that occurred over the decades. Specifically, over 
the period 1970-2010, the number of municipalities increases from 3952 to 5565. Therefore, 
to allow consistent comparisons over time, it is necessary to aggregate these municipalities 
into broader geographical areas, called Minimum Comparable Areas (MCA). Based on the 
aggregation of municipalities developed by IPEA (Reis et al., 2010), this study has 3659 
MCAs relating to the aggregation of all Brazilian municipalities for each census from 1970 to 
2010, covering all territory and avoiding selection bias problem.  
 
3.2 Evolution of Brazilian MCAs size distribution 
 To investigate the evolution of the Brazilian population distribution shape for 1970-
2010 period, a non-parametric normal kernel density with bandwidth value of 0.0245 was 
estimated for the urban population distribution for each decade2. Following Gallo and Chasco 
(2007), relative population size are considered and the Figure 1, below, shows the 
distributions of the relative log of population size in 1970, 1980, 1991, 2000 and 2010. The 
Kernel density plot may be interpreted as the continuous equivalent of a histogram in which 
the number of intervals has been set to infinity. Adopting a similar strategy to interpretation 
of Gallo and Chasco, 1 on the horizontal axis indicates Brazilian average MCA size, 1.5 
indicates 50% higher than the average, and so on.  
 
 
 
 
 
 
 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 The largest bandwidth among the optimum values calculated for each decade was chosen. The 
optimum values for each decade were calculated using the Matlab function ksdensity. 



Figure 1 – Normal Kernel Density Functions for the Population Distribution of MCAs, 1970-
2010 

 
Notes: Elaboration by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 
and 2010. 
 
 Observing the figure, it is remarkable that over the decades there is a loss of 
concentration of AMCs around the mean. However, this presents a deconcentration rhythm 
regressive each decade, i.e., the distance between the lines is decreasing. The behavior in the 
distribution shape may indicate that divergence in population size of MCAs is decreasing, or 
polarized sizes distribution. In other words, the size of the localities are not converging to the 
same level, but diverging at a diminishing rate.  
 Table 3 below shows a statistical summary information, clarifying the Figure 1. 
Through observation of the columns, obviously the mean is equal to 1 since the values are 
normalized, the median value decreases over the decades while the standard deviation 
increases. Clearly, the 2010 distribution is more dispersed around the mean, and this seems to 
be the trend between 1970 and 2010. Specifically, the distribution became more dispersed in 
approximately 20% between 1970 and 2010. However, as already pointed out, this divergence 
is decreasing, between 1970 and 1980 and between 2000 and 2010 the standard deviation 
growth was 9% to 2.1%, respectively. Still observing the values of the table, with the 
reduction of the median over the decades we note that the greater dispersion arises mainly 
from the increased presence of cities above the mean. 
 
 
 



 
Table 3 – Summary Statistics – Relative Population of Brazilian MCAs, 1970 – 2010 
Year Mean Median Standart Deviation 
1970 1 0.9914 0.1044 
1980 1 0.9905 0.1137 
1991 1 0.9902 0.1194 
2000 1 0.9885 0.1231 
2010 1 0.9880 0.1258 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 
2010. 
 The evidence of decreasing divergence is similar to others found in the literature, as in 
Justo (2012) for 431 brazilians MCAs between 1910 and 2010. On the other hand, Trindade 
and Sartoris (2009) found evidence that the behavior of the Brazilian population distribution 
already shows a trend of increasing number of municipalities with population below average 
between 1920 and 2000.  
 Tables 4a and 4b (below) allow us to contextualize such regional changes in 
population distribution emphasized in the preceding paragraphs. While the numbers remain 
fairly stable over the decades, the North region had the largest growth in the number of MCAs 
above the national median from 2.27% in 1970 to 3.03% in 2010. In this period, as can be 
seen in Table 4a the North Region’s share in the total population increased from 4.43% to 
8.32%. On the other hand, the southern region had the highest percentage reduction of MCAs 
above the median from 9.51% in 1970 to 7.76% in 2010. The participation of the southern 
region in the total population decreased from 17.71% to 14.36% between 1970 and 2010. 
 
Table 4a – Relative Population Above the Median per Region, 1970 – 2010  

Region Above Median (%) 
1970 1980 1991 2000 2010 

North 2.27 2.71 2.84 2.92 3.03 
Northeast 19.24 19.90 19.98 19.98 19.70 
Southeast 16.64 16.40 16.67 16.64 16.81 
South 9.51 8.72 8.03 7.82 7.76 
Midwest 2.32 2.27 2.46 2.62 2.71 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 
2010. 
 
Table 4b – Participation on the Total Population per Region, 1970 – 2010  

Region Percentage of Population (%) 
1970 1980 1991 2000 2010 

North 4.43 5.56 6.83 7.60 8.32 
Northeast 30.18 29.25 28.94 28.12 27.82 
Southeast 42.79 43.47 42.73 42.65 42.13 
South 17.71 15.99 15.07 14.79 14.36 
Midwest 4.89 5.72 6.42 6.85 7.37 
Total 93,134,846 119,011,052 146,825,475 169,799,170 190,747,731 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 
2010. 
 Table 5 provides information about what percentage of MCAs within each region was 
higher than the median of the country, which allows us to observe how these changes 
occurred in the population distribution within each region. As can be seen, the biggest 
changes in population distribution occurred within the North and Midwest regions. For 



example, from 143 minimum comparable areas of the North, 58% were above the median in 
1970 and this percentage increased to 77.62% in 2010. In the South, there is a reduction of 
58.6% to 47.81% in the percentage of MCAs with population above the national median. 
 
Table 5 – MCAs with Population Above the Median per Region, 1970 – 2010 

Region Above Median (%) 
1970 1980 1991 2000 2010 Total 

North 58.04 69.23 72.73 74.83 77.62 143 
Northeast 54.24 56.09 56.32 56.32 55.55 1298 
Southeast 43.47 42.83 43.54 43.47 43.90 1401 
South 58.59 53.70 49.49 48.15 47.81 594 
Midwest 38.12 37.22 40.36 43.05 44.39 223 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 
2010. 
 The non-parametric normal kernel density functions estimates, as well as the 
descriptive tables foregoing, have as main role to illustrate the city size distribution patterns. 
One of the limitations of this information is that it does not permit us to make more precise 
statements about the size distribution of cities. In this sense, the next topics will bring 
evidences obtained through the Zipf's law approach, which allows the characterization of the 
overall evolution of the size distribution of cities, and, in order to bring up information on the 
dynamics and evolution of the population distribution, techniques based on Markov Chain 
will also be explored. 
 
3.3 The Rank Size Rule for Brazilian MCAs 
 Table 6 presents the estimation of rank-size equation (2) for all Brazilian MCAs in 
each decade using an OLS estimator. In the 1970s, the estimated Pareto coefficient 
approaches the Zipf's law, with an estimated value of 0.95. According to this rule, city 
populations among any group of cities at any time are proportional to the inverse of the 
ranking of their populations in that group (Gallo and Chasco, 2007). In the following decades, 
this coefficient deviates increasingly from the unit value, reaching 0.77 in 2010. This 
parametric analysis is consistent with the previously obtained evidence of the decreasing 
distances between the size population distributions of MCAs seen in Figure 1, acquired 
through the non-parametric normal kernel density analysis. What seems natural, for a more 
equitable distribution of population between locations (with less variance; 1970 in relation to 
2010, for example), the change in position between the cities become easier due to the fact 
that most localities have closer sizes.  
 
Table 6 – Classic Rank-Size Equation for log(rank) as dependent variable, 1970 – 2010  

Explanatory 
Variables 

OLS 

1970   1980   1991   2000   2010   
Variable 

          Intercept 16.1272 ** 15.4354 ** 15.1158 ** 14.8880 ** 14.7113 ** 
ln Population -0.9517 ** -0.8698 ** -0.8251 ** -0.7950 ** -0.7713 ** 

           No. Obs. 3659  3659  3659  3659 
 

3659 
 R-squared 0.913  0.920  0.925  0.929 

 
0.928 

 Log Likelihood -2458  -2311  -2220 
 

-2110 
 

-2150 
 

           JB stat 3302 ** 4373 ** 6572 ** 9942 ** 12381 ** 



Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 
2010.  
 This result, from the classical equation of rank-size, is qualitatively consistent with 
Trindade and Sartoris (2009), Justo (2012) and Moro and Santos (2013). Of these, what the 
first two have in common with our work is the use of the entire Brazilian territory and both 
rural and urban populations of the observed units, which allows a comparison with our 
analysis. Moreover, unlike our analysis, both two studies use a very high level of aggregation, 
920 MCAs between 1920 and 2000, and 431 observational units between 1910 and 2010, 
respectively. In 1970 their estimated coefficients were 0.794 and 0.77, respectively. The only 
difference between these two estimates and our work is the level of aggregation, but 3659 
observational units is much closer to reality for 1970. Therefore, we can see that the high 
aggregation level used by these two studies lead to results that indicate a higher population 
concentration than the reality, making their evidence inaccurate3. Although Moro and Santos 
(2013) use municipality as observational unit (more disaggregated than MCAs), they only 
take the urban population into account, which makes our results quantitatively incomparable. 
 
3.4 Brazilian Population Distributional Dynamics 
 Unfortunately, it is not possible to have information on the dynamics of the 
distribution estimating the Zipf’s law equations. The approach of the last topic gives no 
information on the movements of the cities within the distribution. Apart from this, it does not 
take into account the possibility that these movements are affected by spatial dependence. To 
assess these empirical issues on the size distribution of Brazilian minimum comparable areas, 
in the next topics we lead with the estimation of transition probability matrices associated 
with discrete Markov chains (Kemeny and Snell, 1976), which will make it possible to follow 
the progress of each group of Brazilian MCAs in time. And then, the spatial dependence is 
introduced through the analysis of LISA Markov and Spatial Markov Chains, both developed 
by Rey (2001). 
 
Traditional Markov Chains  
 In order to observe the behaviour of transition from the relative population levels over 
time, Table 7 shows the traditional Markov transition probability matrix for four classes of 
relative population according to quartiles for each decade between 1970 and 2010. The class 
with the MCAs with smaller populations relative is represented by the first quartile. 
Therefore, if a MCA is in the first quartile class means that it is among the 25% smaller in 
terms of relative population, and if the MCA is inserted in the fourth quartile means that 25% 
is among the largest in terms of relative population. 
 
Table 7 – Markov Transition Probability Matrix for Brazilian MCAs population, 1970-2010 

ti 
ti+1 

1 2 3 4 
1 0.9208 0.0781 0.0005 0.0005 
2 0.0787 0.8249 0.0951 0.0014 
3 0.0005 0.0971 0.8356 0.0667 
4 0.0000 0.0000 0.0686 0.9314 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 
2010. 
 From Table 7, several points can be observed. Firstly, the transitions probabilities on 
the main diagonal are relatively high. If the MCA is in the ith class, the probability of being in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 In 1970 the Brazilian territory was divided into 3952 municipalities. 



the same class the decade after is at least 82.49% and at most up 93.14%.  Specifically, the 
probability that the MCA in the second quartile remain in this class in the next period is 
82.49%. The high probabilities on the main diagonal show a low interclass mobility, a high 
persistence of MCAs to stay in their own class from one decade to another over the whole 
period. However, since these probabilities are not exactly equal to 1, we have the possibility 
to analyse how the MCAs in each cell move to other cells. Secondly, the probability to 
continue in the initial state, given by the diagonal elements, is higher in the two extreme 
classes. In particular, the largest and smallest MCAs have less probability of moving to 
another categories, i.e., these localities have less interclass mobility than the medium-size 
cities. Since the elements of main diagonal do not assume the value 1, so there is no 
possibility of parallel or uniform growth between MCAs. This result is an evidence that 
population distribution structure suffered changes during the period 1970-2010.  
 Continuing with the reading of Table 7, we realize that the non-diagonal elements are 
extremely smaller than elements in the main diagonal. Nevertheless, during 1970 to 2010, the 
medium classes (2 and 3) have more probability of inter-class mobility than extreme classes 
(1 and 4), the biggest transition probability among different classes is 9.71% which occurs 
from third to second quartile; next is the second to third class moving, 9.51%.  That is, the 
largest flows occur between the MCAs that are in the second and third classes. This evidence, 
together with high persistence of both largest and smallest MCAs to stay in the initial class, 
highlights the major role of medium-size localities in the processes of urban agglomeration 
that occurred in Brazil during the last 40 years. This evidence is in agreement with Andrade 
and Serra (2001), as they assert that Brazilian population is undergoing a process of 
polarization reversal, in which the medium-sized cities play a decisive role in an automatic 
decentralization of economic activities. In addition, the probabilities of MCAs move up or 
down more than two steps are extremely small. 
 The first mean passage time indicates the expected time for a locality to move from 
class i to class j for the first time. To determine the speed with which the urban municipalities 
move within the distribution, Table 8 displays the mean first passage time matrix for relative 
population based on equation (8)4. 
 
Table 8 – First Mean Passage Time Matrix in Decades for Brazilian MCAs population, 1970-
2010 

ti 
ti+1 

1 2 3 4 
1 4.00 13.00 33.16 75.36 
2 37.47 4.00 20.72 63.31 
3 57.47 20.28 4.00 43.73 
4 72.05 34.86 14.58 4.00 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 
2010. 
 On average, the number of years to reach any class other than the original is relatively 
high: the shortest time passage is 13 decades and the longest is 75.36 decades.  As expected, 
more distant classes take longer to be reached. For example, for a MCA that was originally in 
class 1 achieve the class 3, it takes on average 33.6 decades. The faster declines in the 3 and 4 
classes (20.28 and 14.58 decades, respectively) may indicate that localities in these classes are 
more likely to lose relative population. This evidence suggests a general progressive 
suburbanization process in which big cities stop to grow, favouring the progressive 
appearance of smaller population cores (Gallo and Chasco, 2007).  
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 The ergodic distribution can be interpreted as the long-run equilibrium in the 
distribution of relative population of the MCAs. As stated by Gallo and Chasco (2007), given 
a regular transition matrix, with the passage of many periods, there will be a time when the 
distribution of urban municipalities will not change any more: that is the ergodic or limit 
distribution. As the population relative discretization was made from the quartiles, the ergodic 
distribution naturally will be similar to the initial distribution of classes (25% of MCAs in 
each class) and does not bring interesting results to be interpreted. 
 A consideration about limitations of traditional Markov chains to study the dynamics 
of cities is that they do not capture the spatial dependence that may exist between the studied 
observational units. In order to take into account the possibility of spatial dependence in 
population distribution dynamics of Brazilian minimum comparable areas, we introduce in 
the following topics the spatial dependence through the analysis of LISA Markov, that 
integrates the local indicators of spatial association into a dynamic framework based on 
Markov chains, and Spatial Markov Chains, that extends the transition probabilities from 
traditional Markov chains to be conditioned on the initial relative population class of its 
spatial lag. Both approaches were developed by Rey (2001). 
 
LISA Markov 
 Table 9 below summarizes the spatial transitions using the same classification system 
proposed by Rey (2001). The LISA Markov matrix was estimated for decennial time interval: 
between 1970 and 1980, 1980 and 1991, 1991 and 2000, and between 2000 and 2010. The 
main motivation is the distinction between the decades over the last 40 years of changes in the 
population configuration of the country. Performing the estimation with LISA decennial 
intervals give us an idea of how the changes on the behavior of MCA's population distribution 
in relation to their respective spatial lags have occurred in every period. As can be seen, the 
transition probability of Type 0 is high; there is a higher probability of minimum comparable 
areas and their spatial lag to remain in the same classification. Additionally, this probability 
increases each decade indicating a low mobility between the classes. Specifically, between 
1970 and 1980 the probability of transition Type 0 was 86.89%, and between 2000 and 2010 
this probability increases to 96.91%. This evidence of stability in the population distribution 
behavior over time corroborate with the normal non-parametric kernel density functions 
estimates (Figure 1) and with the summary statistics (Table 3). 
 
Table 9 – LISA Spatial Transitions (Decennial) for Brazilian MCAs population, 1970 – 2010 

Interval Type of Transition Cohesion Flux Type 0 I II IIIA IIIB 

1970 to 
1980 

0.8986 0.0443 0.0533 0.0038 0.0000 0.9024 0.1014 
UP 0.0139 0.0128 0.0003 - 

  DOWN 0.0303 0.0404 0.0036 - 
  

        1980 to 
1991 

0.9322 0.0295 0.0358 0.0019 0.0005 0.9341 0.0678 
UP  0.0098 0.0123 0.0005 - 

  DOWN 0.0197 0.0235 0.0014 - 
  

        1991 to 
2000 

0.9516 0.0191 0.0292 0.0000 0.0000 0.9516 0.0484 
UP 0.0096 0.0093 0.0000 - 

  DOWN 0.0096 0.0200 0.0000 - 
  

        2000 to 
2010 

0.9691 0.0120 0.0189 0.0000 0.0000 0.9691 0.0309 
UP 0.0046 0.0063 0.0000 - 

  DOWN 0.0074 0.0126 0.0000 -     



Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 
2010. 
 Others interesting results can be obtained by Type II transitions, which involves a 
transition of only the neighbours in relative space, but the locality in question remains in the 
previous state. The probability of this transition type, as expected, decreases with each 
decade. As in the previous analysis, there is a greater probability of downward movement, i.e. 
higher probabilities of most populous neighbours become less populated. 
 We can investigate further highly populated communities that propelled the 
neighbours, i.e., MCAs that were populated above average and had less populous neighbours, 
while in the following period the neighbours became highly populated. In the interval 
between 1970 and 1980, we identified 14 MCAs (48 municipalities) that played this role. 
These minimum comparable areas are equivalent to the current territory of 48 municipalities, 
three of these are located in Pará state (North), 3 in Pernambuco and 3 in Bahia (Northeast), 6 
in São Paulo state (Southeast), 3 in Paraná state (South), and finally, 27 municipalities in  
state of Mato Grosso and one in the Federal District (Midwest). Only 3 (Curitiba, Brasília and 
Cuiabá) of these 48 municipalities are capitals of their respective states. Between 1980 and 
1991, 13 MCAs (25 municipalities) played this role, ten of these municipalities are located in 
Pará state (North); 1 in Rio Grande do Norte, 1 in Paraíba and 6 in Bahia (Northeast); 2 in 
Minas Gerais and 3 in São Paulo state (Southeast); and 2 in Santa Catarina state (South). Of 
these 25 municipalities, only 4 are capitals (Belém, Natal, João Pessoa and Salvador). 
Between 1991 and 2000, only 4 MCAs (5 municipalities) played this role, 1 in Sergipe 
(Northeast); 2 in Minas Gerais and 1 in São Paulo state (Southeast); and 1 in Santa Catarina 
(South). At this period, Sergipe's state capital (Aracaju) played this role of highly populated 
community that propelled the neighbours. Finally, between 2000 and 2010, also only 4 MCAs 
(8 municipalities) played this role, all of them in Northeast, 4 in Maranhão state (including the 
capital São Luís) and 4 in Ceara state5. Probably, these municipalities boosted population 
growth in theirs neighbourhoods. To investigate more deeply these municipalities is an 
interesting suggestion for future research. In relation to Type I transition, which occurs 
when only the locality moves, but its neighbours remain in the same category, this is less 
likely than Type II and is decreasing over the decades. Regarding the probability of Type IIIa, 
which occurs when both MCA and neighbors move in the same direction in the distribution, 
the results indicate that the probability of such transition became null between the decades of 
1991 and 2000 and between 2000 and 2010. That is, in the last 20 years there were no 
transitions of minimum comparable areas together with their neighborhood within the urban 
hierarchy. Finally, the cohesion and flow measurements are decreasing over time. In other 
words, over the time the probability of the MCAs move in the same direction of its spatial lag 
between different classes decreases, and the flux measurement indicates that there is a 
decreasing instability in behaviour of MCAs relative to its neighbours in the population 
distribution, as already evidenced. 
 
Spatial Markov Chains 
 From the traditional Markov matrix, Rey (2001) suggests an extending modification, 
so that the transition probabilities are conditioned on the initial relative population class of its 
spatial lag. The spatial Markov matrix, as called by Rey, speaks to the question of whether a 
locality’s transition in the relative population distribution is related to the relative population 
of its neighbours. As explained by Rey, the spatial provides a great deal of information 
regarding the transitions of regions and the possible association between the direction and rate 
of the transitions and the regional context faced by each economy. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 The listings of municipalities for each decennial interval are in Table A1 in the Appendix. 



 A spatial Markov transition probability matrix was constructed to analyse the spatial-
temporal dynamics of relative population distribution, i.e., considering the possible influence 
from neighbours on the transition of regions. The standard contiguity neighbours matrix (W) 
is used for estimation of following spatial Markov matrices, reported in Table 10. 
 
Table 10 – Spatial Markov Transitions Probabilities Matrix for Brazilian MCAs population, 
1970-2010 

Spatial Lag ti 
ti+1 

1 2 3 4 

1 

1 0.9546 0.0448 0.0006 0.0000 
2 0.1088 0.8391 0.0522 0.0000 
3 0.0000 0.1088 0.8407 0.0505 
4 0.0000 0.0000 0.0507 0.9493 

2 

1 0.9096 0.0894 0.0010 0.0000 
2 0.0850 0.8470 0.0670 0.0009 
3 0.0011 0.1105 0.8475 0.0409 
4 0.0000 0.0000 0.0700 0.9300 

3 

1 0.8866 0.1134 0.0000 0.0000 
2 0.0559 0.8410 0.1030 0.0000 
3 0.0009 0.0986 0.8489 0.0516 
4 0.0000 0.0000 0.0811 0.9189 

4 

1 0.8628 0.1326 0.0000 0.0047 
2 0.0631 0.7474 0.1836 0.0059 
3 0.0000 0.0761 0.8073 0.1166 
4 0.0000 0.0000 0.0657 0.9343 

Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 
2010. 
 Initially, some evidences can be seen from Table 10. Firstly, spatial background 
appears to play an important role in the dynamics of relative population distribution. In other 
words, the neighbours of a MCA have an impact on its transition probabilities over time. If 
the spatial context did not work, then the four conditional matrices should be the same and are 
equal to the traditional Markov matrix (Table 7). But in fact it is the opposite.  Specifically, a 
chi-squared test of the difference between each of the spatial conditioned transition 
submatrices against the overall (a-spatial) transition matrix rejects the null hypothesis that 
these matrices are equal at 1%6. Secondly, different spatial contexts have different effects on 
transition for regions. Specifically, the probability of upward transitions will increase for 
MCAs with neighbours in high classes. For example, for a MCA in the first quartile with 
neighbours in the same class, the probability of moving upward is 4.48%, while if it is 
adjacent to localities in fourth quartile this probability increases to 13.26%. A similar 
phenomenon to this occurs also for MCAs originally in classes 2 and 3.  
 In table 10, as in Table 7, the medium classes (2 and 3) have more probability of inter-
class mobility than extreme classes (1 and 4). However, considering the spatial dimension, we 
can observe that the MCAs grouped into medium classes have a higher probability of a 
downward transition if your neighbours are in a less populated class (class 1).  The opposite 
happens if the neighbours are the most populous class (class 4). This evidence that the MCAs 
in the third quartile is more likely to move within the distribution to a larger class when they 
are near the most populated places, certainly means that there is an overflow of the population 
of large cities to medium-sized cities. The latter evidence highlights again the major role of 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 Table A2 in appendix. 



medium-size localities in the processes of urban agglomeration that occurred in Brazil during 
the last 40 years, even considering the spatial context.  
 Furthermore, as suggested by Rey (2001), it is possible to know the influence of 
spatial dependence on the transition probability comparing the elements of a traditional 
transition matrix with the elements of the spatial Markov matrix. For example, ignoring 
spatial context (Table 7), the probability of a MCA in the third quartile to move down to the 
second quartile is 9.71%, this probability rises to 10.88% if the neighbours are in the first 
quartile (less populated class). We can also observe, by comparing the traditional and spatial 
matrix, that the less populous MCAs that have highly populated neighbours decreases the 
probability of persistence in the same class distribution. Specifically, ignoring the spatial 
context, the probabilities of MCAs to in the first and second quartiles are 92.08% and 
82.49%, respectively. These probabilities are reduced to 86.28% and 74.74% when high-
populated neighbours surround these locations. Additionally, we can explore steady state 
distribution implied by each estimated conditional transition probability matrix from Table 
11, calculated as steady state distribution that was defined in section 2.3. The steady state 
distribution spatially conditioned is presented in Table 11. 
 
Table 11 – Steady State Distribution for Brazilian MCAs population, 1970 – 2010 

Spatial Lag Population (%) 
1 2 3 4 

1 0.5472 0.2284 0.1125 0.1119 
2 0.3225 0.3401 0.2101 0.1273 
3 0.1570 0.3130 0.3239 0.2062 
4 0.0537 0.1167 0.2939 0.5357 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 
2010. 
 The long run distribution for MCAs with neighbouring relatively less populated (class 
1) has 54.72% of localities in the first quartile and 11,19% in the fourth quartile, for example. 
On the other hand, the long run distribution for MCAs with neighbouring relatively high 
populated (class 4) has just 5.37% of localities in the first quartile and 53.57% in the fourth 
quartile. According to Gallo and Chasco (2007), concentration of the frequencies in some of 
the classes, that is, a multimodal limit distribution, may be interpreted as a tendency towards 
stratification into different convergence clubs. As can be noted in main diagonal, there would 
be a higher concentration of frequency on a particular class according to the spatial lag that 
can be an evidence of different convergence clubs according to spatial lag. 
 Finally, we can determine the speed with which the urban municipalities move within 
the relative population distribution, conditioned to spatial lag. Table 12 displays the expected 
time for a locality to move from class i to class j for the first time based on equation (8) for 
each submatrices in Table 10, i.e., conditional on quartile in population distribution of its 
neighbours. 
 As can be seen in Table 12, MCAs with relative population in the first quartile with 
neighbours in the first quartile return to the first quartile after 1.83 decades, after leaving the 
first quartile. This time is 18.62 decades for localities in the first quartile with neighbours high 
populated. Furthermore, MCAs in first class with neighbours also in the first quartile enter the 
third class 84.52 decades after leaving the first quartile, on average. On the other hand, this 
time frame falls to 23.31 decades if the spatial lag is in third quartile. 
  
 
 
 



 
Table 12 – Spatial Markov First Mean Passage Time in Decade for Brazilian MCAs 
population, 1970 - 2010 

Spatial Lag ti 
ti+1 

1 2 3 4 

1 

1 1.83 22.27 84.52 240.90 
2 17.98 4.38 63.34 219.72 
3 36.31 18.33 8.89 156.38 
4 56.02 38.04 19.71 8.93 

2 

1 3.10 11.23 39.10 135.51 
2 23.10 2.94 28.35 124.74 
3 37.06 14.30 4.76 97.93 
4 51.35 28.59 14.29 7.86 

3 

1 6.37 8.82 23.31 70.82 
2 47.37 3.20 14.49 62.00 
3 63.37 16.52 3.09 47.51 
4 75.71 28.86 12.34 4.85 

4 

1 18.62 9.04 15.78 26.86 
2 126.64 8.57 8.26 20.26 
3 163.11 36.46 3.40 13.19 
4 178.33 51.68 15.22 1.87 

Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 
2010. 
  
4. Conclusions 
 The objective of this paper was to explore the behavior of the population size 
distribution of Brazilian Minimum Comparable Areas (MCAs) covering all Brazilian territory 
between 1970 and 2010, revisiting the traditional rank-size rule and Markov chain 
approaches. In order to bring up more accurate information on the dynamics and evolution of 
the population distribution, the spatial dependence is introduced through the analysis of LISA 
Markov and Spatial Markov Chains, both developed by Rey (2001). The second and main 
objective of the present thesis was to model population growth dynamics of Brazilian 
Minimum Comparable Areas (MCAs) in order to assess the determinants of population 
growth of these units between 1970 and 2010 and examine the existence and magnitude of 
spatial interaction and spatial spillover effects associated with these determinants. 
 Initially, the non-parametric normal kernel density functions estimates brought 
evidence that behavior in the distribution shape may indicate that divergence in population 
size of MCAs is decreasing. The Zipf's law estimation indicates that the population 
distribution is, decade by decade, moving away from Pareto law. In other words, this result 
shows that in the Brazilian case, over time, less and less the ranking of cities is influenced by 
its size. In the estimation of quadratic rank-size equation, the curvature presents downward 
concavity; there is a negative correlation between ranking variation and size. 
 The traditional Markov chain approach brings as main evidence the high probabilities 
on the main diagonal indicating a low interclass mobility, high-persistence of MCAs to stay in 
their own class size from one decade to another over the whole period. As suggested by Rey 
(2001), a spatial Markov transition probability matrix was constructed to analyse the spatial-
temporal dynamics of relative population distribution, i.e., considering the possible influence 
from neighbours on the transition of regions. The results bring evidence that different spatial 
contexts have different effects on transition for regions. Specifically, the probability of 
upward transitions will increase for MCAs with neighbours in high classes. Another 



interesting results is that the MCAs grouped into medium classes have a higher probability of 
a downward transition if their neighbours are in a less populated class (class 1).  The opposite 
happens if the neighbours are the most populous class (class 4). This evidence highlights 
again the major role of medium-size localities in the processes of urban agglomeration that 
occurred in Brazil during the last 40 years, even considering the spatial context. In relation to 
the LISA Markov approach, we found evidence of stability in the population distribution 
behavior over time that corroborate with the normal non-parametric kernel density functions 
estimates.  
 Additionally, we investigated further highly populated communities that propelled the 
neighbours (MCAs that were populated above average and had less populous neighbours, 
while in the following period the neighbours became highly populated). It was identified that 
some municipalities, mainly in the north and northeast have played this role in the past 40 
years, including some capitals of their respective states. Investigate more deeply the 
municipalities with this feature is an interesting suggestion for future research.  
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Appendix 
Table A1 – High-Populated Municipalities that Propelled the Neighbours 

1970-1980 1980-1991 1991-2000 2000-2010 
Municipality FU Municipality FU Municipality FU Municipality FU 
Terra Santa PA Belém PA Aracaju SE Presidente Sarney MA 
Faro PA Redenção PA Marataizes MG Pinheiro MA 
Oriximiná PA São Geraldo do Araguaia PA Itapemirim MG Pedro do Rosário MA 
Santa Filomena PE Conceição do Araguaia PA Jundiaí SP São Luís MA 
Ouricuri PE Xinguara PA Itajaí SC Itapagé CE 
Santa Cruz PE Rio Maria PA 

  
Tejuçuoca CE 

Mata de São João BA Piçarra PA 
  

Catunda CE 
Camaçari BA Floresta do Araguaia PA 

  
Santa Quitéria CE 

Dias d'Ávila BA Sapucaia PA 
    Araguari ES Pau d'Arco PA 
    Coronel Fabriciano ES Natal RN 
    Campinas SP João Pessoa PB 
    Itapevi SP Conceição do Coité BA 
    Saltinho SP Monte Santo BA 
    Piracicaba SP Madre de Deus BA 
    São Roque SP Salvador BA 
    Araçariguama SP Senhor do Bonfim BA 
    Curitiba PR Andorinha BA 
    Foz do Iguaçu PR Uberaba ES 
    Santa Terezinha de Itaipu PR Delta ES 
    Poxoréo MT Atibaia SP 
    Cana Brava do Norte MT Itapira SP 
    Campo Verde MT Sorocaba SP 
    Campinápolis MT Balneário Arroio do Silva SC 
    Cuiabá MT Araranguá SC 
    Jaciara MT 

      Novo São Joaquim MT 
      Juscimeira MT 
      Ribeirão Cascalheira MT 
      Alto Boa Vista MT 
      São José do Xingu MT 
      Canarana MT 
      



Confresa MT 
      Santa Terezinha MT 
      Querência MT 
      Dom Aquino MT 
      Primavera do Leste MT 
      Luciara MT 
      Barra do Garças MT 
      Nova Xavantina MT 
      São Félix do Araguaia MT 
      São Pedro da Cipa MT 
      Cocalinho MT 
      Porto Alegre do Norte MT 
      Araguaiana MT 
      Água Boa MT 
      Vila Rica MT 
      Brasília DF             

Notes: Elaboration by the Author. FU = Federal Unit (State). 
 
Table A2 - Test of difference between the conditional transition matrix against the overall 
transition matrix 

Spatial Conditioned 
Transitions Submatrices Chi2 P-value Degrees of freedon 

1 61.8955 0.0000 9 
2 24.1559 0.0041 9 
3 26.3733 0.0018 9 
4 148.6507 0.0000 9 

Notes: Estimates by the Author. 
 


